Extensions 1→N→G→Q→1 with N=C18 and Q=C22

Direct product G=N×Q with N=C18 and Q=C22
dρLabelID
C22×C1872C2^2xC1872,18

Semidirect products G=N:Q with N=C18 and Q=C22
extensionφ:Q→Aut NdρLabelID
C18⋊C22 = C22×D9φ: C22/C2C2 ⊆ Aut C1836C18:C2^272,17

Non-split extensions G=N.Q with N=C18 and Q=C22
extensionφ:Q→Aut NdρLabelID
C18.1C22 = Dic18φ: C22/C2C2 ⊆ Aut C18722-C18.1C2^272,4
C18.2C22 = C4×D9φ: C22/C2C2 ⊆ Aut C18362C18.2C2^272,5
C18.3C22 = D36φ: C22/C2C2 ⊆ Aut C18362+C18.3C2^272,6
C18.4C22 = C2×Dic9φ: C22/C2C2 ⊆ Aut C1872C18.4C2^272,7
C18.5C22 = C9⋊D4φ: C22/C2C2 ⊆ Aut C18362C18.5C2^272,8
C18.6C22 = D4×C9central extension (φ=1)362C18.6C2^272,10
C18.7C22 = Q8×C9central extension (φ=1)722C18.7C2^272,11

׿
×
𝔽